24,899 research outputs found

    Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the Bi2_2Se3_3 Topological Insulator

    Full text link
    Dirac-like surface states on surfaces of topological insulators have a chiral spin structure that suppresses back-scattering and protects the coherence of these states in the presence of non-magnetic scatterers. In contrast, magnetic scatterers should open the back- scattering channel via the spin-flip processes and degrade the state's coherence. We present angle-resolved photoemission spectroscopy studies of the electronic structure and the scattering rates upon adsorption of various magnetic and non-magnetic impurities on the surface of Bi2_2Se3_3, a model topological insulator. We reveal a remarkable insensitivity of the topological surface state to both non-magnetic and magnetic impurities in the low impurity concentration regime. Scattering channels open up with the emergence of hexagonal warping in the high-doping regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure

    Coherent resonant tunneling in ac fields

    Full text link
    We have analyzed the tunneling transmission probability and electronic current density through resonant heterostructures in the presence of an external electromagnetic field. In this work, we compare two different models for a double barrier : In the first case the effect of the external field is taken into account by spatially dependent AC voltages and in the second one the electromagnetic field is described in terms of a photon field that irradiates homogeneously the whole sample. While in the first description the tunneling takes place mainly through photo sidebands in the case of homogeneous illumination the main effective tunneling channels correspond to the coupling between different electronic states due to photon absorption and emission. The difference of tunneling mechanisms between these configurations is strongly reflected in the transmission and current density which present very different features in both cases. In order to analyze these effects we have obtained, within the Transfer Hamiltonian framework, a general expression for the transition probability for coherent resonant tunneling in terms of the Green's function of the system.Comment: 16 pages,Figures available upon request,to appear in Phys.Rev B (15 April 1996

    Extensions of operators

    Get PDF
    We introduce the concept of the extension spectrum of a Hilbert space operator. This is a natural subset of the spectrum which plays an essential role in dealing with certain extension properties of operators. We prove that it has spectral-like properties and satisfies a holomorphic version of the Spectral Mapping Theorem. We establish structural theorems for algebraic extensions of triangular operators which use the extension spectrum in a natural way. The extension spectrum has some properties in common with the Kato spectrum, and in the final section we show how they are different and we examine their inclusion relationships

    On the Reconstructed Fermi Surface in the Underdoped Cuprates

    Get PDF
    The Fermi surface topologies of underdoped samples the high-Tc superconductor Bi2212 have been measured with angle resolved photoemission. By examining thermally excited states above the Fermi level, we show that the Fermi surfaces in the pseudogap phase of underdoped samples are actually composed of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly small at the anti-ferromagnetic zone boundary, which creates the illusion of Fermi "arcs" in standard photoemission measurements. The area of the pockets as measured in this study is consistent with the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and area of the pockets is well reproduced by a phenomenological model of the pseudogap phase as a spin liquid.Comment: 4 pages, 4 figures. Submitted to Physics Review Letter

    High-energy kink in high-temperature superconductors

    Get PDF
    In conventional metals, electron-phonon coupling, or the phonon-mediated interaction between electrons, has long been known to be the pairing interaction responsible for the superconductivity. The strength of this interaction essentially determines the superconducting transition temperature TC. One manifestation of electron-phonon coupling is a mass renormalization of the electronic dispersion at the energy scale associated with the phonons. This renormalization is directly observable in photoemission experiments. In contrast, there remains little consensus on the pairing mechanism in cuprate high temperature superconductors. The recent observation of similar renormalization effects in cuprates has raised the hope that the mechanism of high temperature superconductivity may finally be resolved. The focus has been on the low energy renormalization and associated "kink" in the dispersion at around 50 meV. However at that energy scale, there are multiple candidates including phonon branches, structure in the spin-fluctuation spectrum, and the superconducting gap itself, making the unique identification of the excitation responsible for the kink difficult. Here we show that the low-energy renormalization at ~50 meV is only a small component of the total renormalization, the majority of which occurs at an order of magnitude higher energy (~350 meV). This high energy kink poses a new challenge for the physics of the cuprates. Its role in superconductivity and relation to the low-energy kink remains to be determined.Comment: 13 pages, 4 figure
    corecore